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Traditionally there do not exist integral invariants for a nonconservative system
in the phase space of the system. For weak nonconservative systems, whose
dynamical equations admit adjoint symmetries, there exist PoincareÂ and
PoincareÂ±Cartan integral invariants on an extended phase space, where the set
of dynamical equations and their adjoint equations are canonical. Moreover,
integral invariants also exist for pseudoconservative dynamical systems in the
original phase space if the adjoint symmetries satisfy certain condtions.

1. INTRODUCTION

Integral invariants of dynamical systems play an important role in physics

and mechanics. Traditionally, the study of integral invariants is limited to
conservative systems (Arnold, 1978; Li, 1993; Mei et al., 1991). Some

researchers have tried to extend the applications of the integral invariants to

nonconservative systems and nonholonomic systems (Djukic, 1975; Li and

Li, 1990). However, these generalizations are based on the limitation of the

variational operation. Liu et al. (1991) pointed out that no basic integral

invariants exist for nonconservative systems from the traditional point of
view. They put forward the integral variants of the nonconservative systems.

It should be pointed out that the existence of integral invariants is closely

related to the symplectic structure of the phase space. The key to the general-

ization of integral invariants to other systems lies in the search for new

Lagrangians or Hamiltonians for those systems.
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The variational formulation of a system of n second-order ordinary

differential equations has been developed. If the Helmholtz conditions are

satisfied, the equations admit the Lagrangian representation (Santilli, 1978).
Such systems are called self-adjoint . Recently the Lie theory of differential

equations has received much attention in the context of modern differential

geometry (Sarlet et al., 1990, 1997). The dynamical symmetries and adjoint

symmetries of the equations of motion are put forward as generalizations

of original work by S. Lie. A Lagrangian for some nonconservative

dynamical systems can be constructed if the dynamical symmetries or
adjoint symmetries of the dynamical equations satisfy certain conditions.

In this case there are integral invariants for the nonconservative dynami-

cal system.

On the other hand, research on the geometry of adjoint symmetries

of second-order differential equations indicates that adjoint symmetries

represent the geodesic property of equations of motion and geodesic
deviation determined by Jacobi covectors (Sarlet et al., 1995; Wang et al.,
1998). For example, the distribution of geodesics of symmetric connection in

Riemannian space is governed by the equations of geodesic deviation,

which are just the representation of adjoint symmetries of geodesics. This

fact indicates that the distribution of solution curves of some nonconserva-
tive dynamical systems with symmetries in phase space depends on the

symmetries of the systems. So the adjoint symmetries of dynamical

equations may be related to a topological characteristic of the phase space,

which recalls the situation of phase flow and integral invariants. Fortunately,

a composite variational principle has been constructed, where the Lagrangian

is composed of dynamical functions and Jacobi covectors (Caviglia, 1986).
Based on this principle we can find new PoincareÂand PoincareÂ±Cartan

integral invariants in an extended phase space.

In Section 2 we review some results on the PoincareÂand PoincareÂ±

Cartan integral invariants from the traditional point of view, and briefly

discuss the adjoint symmetries of a system of n second-order ordinary

differential equations, which are viewed as adjoint equations of the system.
According to the adjoint symmetries, we classify the nonconservative

systems into weak and strong in Section 3. For weak nonconservative

systems we prove that a system of dynamical equations and their adjoint

equations are canonical in an extended phase space and there exist integral

invariants in the space. In Section 4, we construct integral invariants for

pseudoconservative systems which belong to the weak nonconservative
systems, but are self-adjoint. In last section, we reanalyze the one-

dimensional damped vibration, which is an illustrative example of a

weak nonconservative system. The PoincareÂand PoincareÂ±Cartan integral

invariants exist in the extended phase space.
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2. REVIEW OF INTEGRAL INVARIANTS

Consider a holonomic time-dependent mechanical system with n degrees

of freedom. Denote its configuration space by a smooth manifold M with

local coordinates {qi} (i 5 1, 2, . . . , n). The evolution space is a contact
manifold M 2n 1 1 5 TM 3 R, where TM is a tangent bundle to M and R a

real line with coordinate t. The dual extended phase space of the system is

represented by MÄ 2n 1 1 5 T*M 3 R with coordinates { pi , qi, t}. If the Hamilto-

nian of the system is given as H( pi , qi, t), then the canonical equations of

the conservative system are

pÇ i 5 2
- H

- qi , qÇ i 5
- H

- pi

(1)

It is well known that the integral curves, i.e., phase flow, of these equations

are vortex lines of the form pi dqi 2 H dt. By applying Stokes’ s theorem,

we obtain the fundamental PoincareÂ±Cartan integral invariants.

Theorem 1. Suppose that the two curves g 1 and g 2 encircle the same tube

of phase trajectories of Hamiltonian canonical equations. Then the integrals of
the form pi dqi 2 H dt along them are the same:

R g 1

pi dqi 2 H dt 5 R g 2

pi dqi 2 H dt (2)

The integral r g pi dqi 2 H dt is called the PoincareÂ±Cartan rela-

tive integral invariant. If the curves g 1 and g 2 are not closed, the integral

* g pi dqi 2 H dt is an absolute integral invariant. The form v 5 pi dqi 2
H dt is called the relative invariant form of the Hamiltonian vector field XH

on the manifold MÄ 2n 1 1 for LXH v exact. The presymplectic 2-form V 5 dpi Ù
dqi 2 dH Ù dt of MÄ 2n 1 1 is also an invariant form of XH because LXH V 5
LXH d v 5 0 (Abraham and Marsden, 1978). Moreover, the phase flow pre-

serves the exterior powers of the form V , i.e., the higher order invariant

forms: V 2, V 3, . . . .

For nonconservative systems, there are no PoincareÂand PoincareÂ±Cartan

integral invariants from the traditional point of view. Suppose the nonconser-

vative forces are denoted by Qi ( pi , qi, t). Then the canonical equations for
the system are

pÇ i 5 2
- H

- qi 1 Qi , qÇ i 5
- H

- pi

(3)

Obviously the phase flow of these equations cannot preserve the integral

r g pi dqi 2 H dt. It can be proved that there exists an integral variant of

PoincareÂ±Cartan type (Liu et al., 1991).
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Theorem 2. If the curve g is an arbitrary closed curve which encircles

the tube of direct paths of the nonconservat ive mechanical system, then along

this curve there exists an integral variant relation of PoincareÂ±Cartan type:

d

dt R g
pi dqi 2 H dt 5 R g

Q i dqi (4)

So only if r g Q i dqi vanishes is the integral r g pi dqi 2 H dt preserved
along the phase flow. However, the condition r g Q i dqi 5 0 means that Qi

5 2 - U/ - qi for some function U P C ` (M 3 R), i.e., the forces Qi are

conservative. Therefore, integral invariants of mechanical systems exist only

for conservative systems in this sense.

At the end of this section we briefly discuss the adjoint symmetries of

the dynamical systems. Denote a system of n second-order ordinary differen-
tial equations

qÇ i 5 f i(t, q j, qÇ j) (5)

by a vector field on the manifold TM 3 R:

Z 5 - / - t 1 qÇ i - / - qi 1 f i(t, q j, qÇ j) - / - qÇ i (6)

Its adjoint symmetries are invariant 1-forms b P Ù 1 (TM 3 R), i.e.,

iZ b 5 0, +Z b 5 0 (7)

where +Z is the Lie differentiation operation along Z.
Considering the basis {Z, - / - qi, - / - qÇ i} of vector fields on TM 3 R and

its dual basic 1-forms {dt, u i 5 dqi 2 qÇ idt, v i 5 dqÇ i 2 f i dt}, the adjoint

symmetries can be represented as

b 5 l i u i 1 r i v i (8)

Making use of (6) and (8), it follows that the condition (7) is equivalent to

l i 1 r Ç i 1 r j
- f j

- qÇ i
5 0 (9a)

r È i 1 1 r j
- f j

- qÇ i 2 2 r j
- f j

- qi 5 0 (9b)

From equation (9a) the invariant 1-form b reads

b 5 2 1 r Ç i 1 r j
- f j

- qÇ i 2 u i 1 r i v i (10)
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with r i fulfilling equation (9b). Alternatively, the adjoint symmetries can be

viewed as a 1-form a 5 +ZS( b ), where S 5 - / - qÇ i ^ u i is a vertical endomor-

phism on the manifold TM 3 R. In local coordinates, it reads

a 5 r Ç i u i 1 r i v i (11)

where the r i satisfy the same equations of the form (9b).

When the special case of the geodesic equation is considered, it follows

in particular that the invariant 1-forms of Z can be looked upon as Jacobi

covectors. The second-order equations (9b) reduce to the equations of geode-

sic deviation. This result can also be generalized to the general dynamical
systems with dynamical symmetries or adjoint symmetries if we define

dynamical connections and Jacobi endomorphisms on the manifold TM 3 R
(Wang et al., 1998).

3. POINCAREÂAND POINCAREÂ± CARTAN INTEGRAL
INVARIANTS IN AN EXTENDED PHASE SPACE

Usually dynamical systems can be classified into conservative and non-

conservative systems or into self-adjoint and non-self-adjoint systems. Evi-

dently conservative systems are self-adjoint, and self-adjoint systems need

not be conservative. In this paper, we further classify nonconservative systems
into weak and strong nonconservative systems as follows.

Definition. A nonconservative dynamical system is said to be weak if
the dynamical equations admit adjoint symmetries. Otherwise it is strong
nonconservative. Furthermore, a system is called pseudoconservative if it is

self-adjoint, but weak nonconservative.

Now we concentrate on weak nonconservat ive systems. For such systems

a functional can be constructed by introducing the Jacobi covectors as addi-

tional variables, by which the original equations of motion and the adjoint
equations, i.e., the second-order differential equations for Jacobi covectors,

can be derived.

Consider an extended state space N 4n 1 1 5 T(M 3 L ) 3 R with local

coordinates {t, QI, QÇ I} (I 5 1, 2, . . . , 2n), where L is a manifold with

coordinates {Qn 1 i}. Let Qi 5 qi, Qn 1 i 5 r i , QÇ i 5 qÇ i, QÇ n 1 i 5 r Ç i. Define a

vector field ZÅ on the vertical subbundle of p : TM 3 R ® R as the component
of Z. Then the requirement of stationarity for the following action functional

(Caviglia, 1986)

! 5 #
t1

t0

^ ZÅ , a & dt 5 #
t1

t0

(qÇ i r Ç i 1 f i r i) dt (12)
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under variations of the q’s and of the r ’s leads to equations (5) and (9b). The

set of differential equations (5) and (9b) is self-adjoint in the traditional sense.

From the new Lagrangian

L 5 ^ ZÅ , a & 5 qÇ i r Ç i 1 f i r i (13)

we define the momenta conjugate to qi and r i by Legendre transformation,

respectively,

p¤i 5
- L
- qÇ i

5 r Ç i 1 r j
- f j

- qÇ i
, Pi 5

- L
- r Ç i

5 qÇ i (14)

from which r Ç i and qÇ i can be solved as functions of t, p¤i and Pi. Hence the
functions f i(t, q j, qÇ j) are transformed into Fi(t, q j, P j) and r Ç i , qÇ i read

r Ç i 5 p¤i 2 r j
- F j

- Pi , qÇ i 5 P i (15)

Then we get an extended phase space NÅ 4n 1 1 5 T*(M 3 L ) 3 R with
coordinates {t, qi, r i , p¤i , Pi}. Therefore the Hamiltonian for the system can

be constructed as

H 5 p¤i qÇ
i 1 Pi r Ç i 2 L 5 Pi p¤i 2 Fi r i (16)

The Hamilton’ s equations are then

PÇ i 5 2
- H
- r i

5 Fi , pÇ¤i 5 2
- H
- qi 5 r j

- Fj

- qi (17a)

r Ç i 5
- H
- P i 5 p¤i 2 r j

- F j

- Pi , qÇ i 5
- H
- p¤i

5 Pi (17b)

Obviously equations (17b) are just the representation of (15). Equations (17a)

are the canonical formulation of equations (5) and (9b). By means of the

above canonical equations (17a) and (17b) the Hamilton vector field X H on
the extended phase space NÅ 4n 1 1 can be obtained,

X H 5 F i -
- P i 1 r j

- F j

- qi

-
- p¤i

1 P i -
- qi 1 1 p¤i 2 r j

- F j

- P i 2 -
- r i

1
-
- t

(18)

Therefore, for weak nonconservative systems, the dynamical equations

together with their adjoint equations are canonical in the extended phase

space NÅ 4n 1 1.

As usual we define a 1-form on the manifold NÅ 4n 1 1

v ¤ 5 Pi d r i 1 p¤i dqi 2 H dt (19)

which is a relative invariant 1-form from the following proposition. Its exte-

rior derivative
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V ¤ 5 d v ¤ 5 dP i Ù d r i 1 dp¤i Ù dqi 2 d H Ù dt (20)

can be taken as a presymplectic 2-form on the manifold NÅ 4n 1 1. Computing

iX H V ¤, we find

iX H V ¤ 5 0 (21)

which indicates that the Hamilton vector field is the characteristic vector
field of V ¤. In other words, the phase flow of canonical equations (17a) and

(17b) are vortex lines of the 1-form v ¤. Therefore the 1-form v is a relative

invariant form and V is an absolute invariant form. Applying Stokes’ s theorem

to the 1-form v in the extended phase space NÅ 4n 1 1, we obtain the follow-

ing result.

Proposition 1. Suppose that the two curves c1 and c2 in the extended phase
space NÅ 4n 1 1 encircle the same vortex tube of phase flow of the Hamiltonian

canonical equations (17a) and (17b). Then the integrals of the form v ¤ 5
Pi d r i 1 p¤i dqi 2 H dt along them are the same:

R c1

P i d r i 1 p¤i dqi 2 H dt 5 R c2

Pi d r i 1 p¤i dqi 2 H dt (22)

If dt 5 0 along the circles c81 and c82, then the PoincareÂintegral invariant
is obtained,

R c8
1

Pi d r i 1 p¤i dqi 5 R c8
2

Pi d r i 1 p¤i dqi (23)

This proposition is a generalization of the usual PoincareÂand PoincareÂ±

Cartan integral invariant to weak nonconservative systems in the extended

phase space. Obviously there exist other higher order integral invariants.

4. INTEGRAL INVARIANTS OF PSEUDOCONSERVATIVE
SYSTEMS

As is well known, the Helmholtz conditions are the conditions that must

be satisfied by a nonsingular multiplier matrix (Aij (t, q, qÇ )) in order that a

given system of second-order differential equations (5), when written in

the form

A ij qÈ
j 1 Bi 5 0 (Bi 5 2 Aij f j) (24)

become the Euler±Lagrange equations for some Lagrangian function L(t, q,

qÇ ). These conditions provide the criterion to determine whether a system of

second-order differential equations is self-adjoint or not. A self-adjoint system

need not be conservative, however. In this paper we deal with self-adjoint
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nonconservative systems, i.e., pseudoconservative systems. If the adjoint

symmetries of a dynamical system satisfy certain conditions, a Lagrangian

for the system can be constructed.

Theorem 3. For F P C ` (TM 3 R), there exists a Lagrangian L* 5 Z(F )

for a mechanical system if and only if the adjoint symmetries of dynamical

vector field Z take the form

b 5 dF 2 S (dZ(F )) 2 Z(F )dt (25)

If the system is originally Lagrangian, then the function Z(F ) may give

an alternative Lagrangian for the same system. If the pseudosymmetry dual
to the adjoint symmetry is a point symmetry of the Lagrangian system and

it in addition happens to be of Noether type, then L* 5 Z(F ) 5 fÇ for P
C ` (M ), which yields a trivial result.

The relation LZ b 5 0 leads to

LZ(S(dZ(F ))) 5 dZ(F ) 2 Z(Z(F ))dt

or

LZ(S(dZ(F )) 1 Z(F )dt) 5 dZ(F ) (26)

which means that the 1-form

u L* 5 S(dZ(F )) 1 Z(F )dt (27)

is a PoincareÂ±Cartan 1-form.

Since the pseudoconservative system admits a regular Lagrangian L*,

we have a Hamiltonian for the system

H* 5 p*i qÇ i 2 L* (28)

by the Legendre transformation

p*i 5
- L*

- qÇ i
(29)

The canonical equations for the system can be written as

pÇ *i 5 2
- H*

- qi , qÇ i 5
- H*

- p*i
(30)

which is globally represented by the so-called Hamiltonian vector field

XH
* 5 2

- H*

- qi

-
- p*i

1
- H*

- p*i

-
- qi (31)

On the phase space MÄ 2n 1 1 5 T*M 3 R the PoincareÂ±Cartan 1-form can be

reformulated by
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u * 5 p*i dqi 2 H* dt (32)

which is a relative 1-form under the Lie derivative with respect to XH*. In
this case there are integral invariants for such dynamical systems in the

phase space.

Proposition 2. Suppose that the two curves c1 and c2 encircle the same
tube of phase flow of XH*. Then the integrals of the 1-form u * along them

are the same:

R
c1

p*i dqi 2 H*dt 5 R
c2

p*i dqi 2 H*dt (33)

5. APPLICATION

Consider the one-dimensional damped vibration having the equation
of motion

qÈ 1 2nqÇ 1 k2q 5 0

where k . n . 0. Obviously this system is not self-adjoint. Its solution is

q 5 exp( 2 nt) (C1 sin v t 1 C2 cos v t) 5 h exp( 2 nt)

where

v 5 ! k2 2 n2, h 5 C1sin v t 1 C2cos v t

The kinetic energy of the system is T 5 1/2 aqÇ 2. Then the momentum is

p 5
- T

- qÇ

5 aqÇ

5 a exp( 2 nt) [C1 ( v cos v t 2 nsin v t) 2 C 2 ( v sin v t 1 ncos v t)]

Let

C1 5 r 0cos g , C2 5 d r 0 sin g

where d , r 0 5 const, 0 # g # 2 p . Then the integral

R p dq 5 #
2 p

0

p
- q

- g
d g 5 p a d v r 2

0 exp( 2 2nt) Þ const

Thus the PoincareÂintegral invariant does not exist in the traditional sense.

However, this system is a weak nonconservative system because the

above equation of motion admits an adjoint symmetry. In fact, the adjoint

equation (9b) for this example reduces to
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r È 2 2n r Ç 1 k2 r 5 0

whose solution is

r 5 exp (nt) (C1 sin v t 1 C2 cos v t) 5 h exp(nt)

The momentum conjugate to r is

P 5 qÇ

5 exp( 2 nt) [C1( v cos v t 2 n sin v t) 2 C2( v sin v t 1 n cos v t)]

5 g exp ( 2 nt)

where

g 5 C1( v cos v t 2 n sin v t) 2 C2 ( v sin v t 1 n cos v t)

and the momentum conjugate to q becomes

p¤ 5 r Ç 1 r
- f

- qÇ
5 r Ç 2 2n r

5 exp (nt) [C1( v cos v t 2 n sin v t) 2 C2 ( v sin v t 1 n cos v t)]

5 g exp (nt)

Thus the generalized PoincareÂintegral invariant reads

R P d r 1 p¤dq 5 R [g exp( 2 nt) ? d(h exp(nt)) 1 g exp(nt) ? d(h exp( 2 nt))]

5 2 R g ? dh

5 2 #
2 p

0 F ( v cos v t 2 n sin v t) sin v t C1
- C1

- g

2 ( v sin v t 1 n cos v t) cos v t C2
- C2

- g

2 ( v sin v t 1 n cos v t) sin v t C2
- C2

- g

1 ( v cos v t 2 n sin v t) cos v t C1
- C2

- g G d g

5 2 p d r 0 v

This example indicates that although there is no PoincareÂintegral invari-

ant for the one-dimensional damped vibration in the phase space with coordi-
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nates {q, p}, we can construct a generalized PoincareÂintegral invariant in

the extended phase space with canonical coordinates {q, r , p¤, P} because

the equation of motion has adjoint symmetry.
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